Time window of autoreceptor-mediated inhibition of limbic and striatal dopamine release.
نویسندگان
چکیده
Forebrain dopamine release is under the local control of D2 family (D2 and D3) autoreceptors. In this study, autoreceptor-mediated modulation of forebrain dopamine release was investigated using amperometry in brain slices following local electrical stimulation. 350 microm-thick slices of nucleus accumbens or dorsolateral neostriatum were prepared from male Wistar rats (150-200 g) and superfused with artificial cerebrospinal fluid at 32 degrees C. Dopamine release was evoked by electrical pulses (0.1 ms, 10 mA) across bipolar tungsten stimulating electrodes and measured at carbon fibre microelectrodes using fixed potential amperometry (+300 mV vs. Ag/AgCl). Peak dopamine release on stimulation (single pulse) was 0.75 microM (neostriatum) and 1.37 microM (nucleus accumbens). Metoclopramide (1 microM) had no significant effect on DA efflux from a single pulse in either region. Using paired pulse stimuli, dopamine release on the second pulse varied according to the interval between the two pulses. At very long intervals (>20 sec), dopamine release was similar to that for the first pulse. At shorter intervals, dopamine efflux was attenuated. Metoclopramide had no effect on second pulse dopamine release when the pulse was applied at short (<0.1 sec) or long (>5.0 sec) intervals after the first. At intermediate intervals, metoclopramide significantly increased second pulse dopamine release. The peak dopamine autoreceptor effect occurred at approximately 550 ms in neostriatum and approximately 700 ms in nucleus accumbens. The onset time is due both to diffusion of dopamine from the release sites to the autoreceptors and receptor-effector mechanisms. These findings may have implications for the local control of forebrain dopamine function in physiological and pathological states.
منابع مشابه
EFFECTS OF CATECHOLAMINES ON DOPAMINE AND SEROTONIN SYNTHESIS IN RAT BRAIN STRIATAL SYNAPTOSOMES: THE ROLE OF PRESYNAPTIC RECEPTORS AND THE SYNAPTOSOMAL REUPTAKE MECHANISM.
The regulation of dopamine and serotonin synthesis in rat brain striatal synaptosomes has been studied using HPLC methods. Noradrenaline was shown to markedly inhibit both the synthesis of dopamine and serotonin. The response of the synaptosomes to the concentrations of noradrenaline appeared to be biphasic, a very effective inhibition occurring at low concentrations (1-5 µm) and a relativ...
متن کاملRegulation of dopamine synthesis in the medial prefrontal cortex: studies in brain slices.
The rapid firing rates and small dopamine (DA) pools that characterize mesoprefrontal DA neurons make these cells more vulnerable to release-dependent changes in intraneuronal DA levels than nigrostriatal DA neurons. In vivo studies of mesoprefrontal DA synthesis are therefore complicated by the necessity to distinguish between effects of dopaminergic drugs on synthesis-modulating autoreceptors...
متن کاملLong-term depression of a dopamine IPSC.
Two determinants of dopamine release from terminals in striatal and limbic structures are the pattern and rate of dopamine neuron firing in the ventral midbrain. This activity is regulated in part by somatodendritic release of dopamine and subsequent feedback inhibition through activation of D2 receptors on dopamine neuron cell bodies and dendrites. This study describes stimulus-dependent long-...
متن کاملSpecies differences in somatodendritic dopamine transmission determine D2-autoreceptor-mediated inhibition of ventral tegmental area neuron firing.
The somatodendritic release of dopamine within the ventral tegmental area (VTA) and substantia nigra pars compacta activates inhibitory postsynaptic D2-receptors on dopaminergic neurons. The proposed mechanisms that regulate this form of transmission differ between electrochemical studies using rats and guinea pigs and electrophysiological studies using mice. This study examines the release and...
متن کاملMicroinfusion of Bupropion Inhibits Putative GABAergic Neuronal Activity of the Ventral Tegmental Area
Introduction: The most common interpretation for the mechanisms of antidepression is the increase of the brain monoamine levels such as dopamine (DA). The increase of DA can reduce depression but it can also decrease the monoamine release because of autoreceptor inhibition. Although bupropion can decrease the dopamine release, there is evidence about stimulatory effects of chronic application o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Synapse
دوره 44 1 شماره
صفحات -
تاریخ انتشار 2002